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Abstract. The non-linear chiral quark–meson U(3)×U(3) model is solved using the Tamm–Dancoff inspired
approximation which is described in an earlier paper [Phys. Rev. D 58, 034003 (1998)]. The resulting system of
15 coupled non-linear differential equations self-consistently determines all quark–meson coupling constants.
Also the obtained solutions for quark and meson fields are stable and physically acceptable. As the zeroth
approximation of a more refined structure they were used to calculate SU(3) baryon octet magnetic moments
and axial coupling constants with baryon state vectors containing valence quarks only, at this primordial
level. The results are very promising, so possibilities to pursuit more sophistication and improved physical
input is indicated.

PACS. 12.39.Ba, 12.39.Fe

1 Introduction

The Tamm–Dancoff inspired approximation (TDIA) [1]
was applied some time ago to the chiral quark–meson
model based on the SU(2) linear σ model [2, 3]. The re-
sults are comparable to those obtained using the hedgehog
Ansätze [4–7]. That is to some extent understandable as
both methods lead to similarly looking sets of equations
for meson solitons (fields). All details of the TDIA are de-
scribed in [1]. It is well known that the Tamm–Dancoff
method [8] is a better approximation than the perturba-
tion theory, so it is a natural environment within which
one dares to attack more ambitious problems, with many
more degrees of freedom.

In [1] the two-flavor linear σ model was used as a trans-
parent example for the application of TDIA. Recently
the three-flavor meson U(3) × U(3) octets were investi-
gated [9–11] and it has been stated [10,11] that the linear
σ model with three flavors works much better than what
was generally believed. As regards the differences with the
non-linear version, in the linear σ model one can treat
both scalar and pseudoscalar nonets simultaneously. The
scalars are the chiral partners of π, η, etc. and the analysis
strongly suggests that they, like the pseudoscalars, are q̄q
states [10,11]. Such theoretical conclusions made the TDIA
approach quite attractive as in that approximation mesons
(solitons) naturally appear, in the lowest order as q̄q states.

a Correspondence to: davorh@phy.hr
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In TDIA one works in the Heisenberg picture [12], expands
field operators in the free field creation and annihilation
operators and then truncates the expansion usually at the
t = 0 level (t being the usual Mandelstam variable). That
leads automatically, after truncations at the q2 = 0 level,
to meson fields (soliton phases) which depend on bilinear
combinations of quark/antiquark operators only, i.e. to q̄q
structures. (The richer meson–quark structure is discussed
in the last section concerning extensions and refinement of
this basic model.)

The chiral quark/meson U(3)×U(3) model under con-
sideration has the familiar form which was used previously
when the SU(2) model [5,6] was enlarged by cranking in-
volving intrinsic flavor space [7]. The system of non-linear
differential equations obtained here bears some similarity
to the systems obtained by using hedgehog Ansätze [5–7].
It has been argued that the linear σ model [10,11] and its
close relative the quark–meson model [7] might capture the
essential features of QCD in the low energy region, while
being easier to handle than the complex exact quark–gluon
theory. The TDIA treatment of the U(3) × U(3) quark–
gluon model thus might give some physical insights in the
baryon structure.

The lowest order TDIA leads to the coupled system
of 15 non-linear differential equations and 21 boundary
conditions for meson octet pseudoscalar and scalar profile
functions. That problem is completely solvable, as will be
outlined below. The strengths of the quark–meson cou-
plings are self-consistently determined by the system. Al-
though the chiral bag formalism for quarks and mesons



484 D. Horvat et al.: Quark–meson SU(3) model in a Tamm–Dancoff inspired approximation

is used here [1, 13] the spherical cavity approximation for
quarks in principle can be dropped. That would lead to
a larger system of equations but it would also mean that
q2 �= 0 level is reached. At this level more sophisticated
renormalization-group dependent coupling constants and
baryon wave functions would be required. This kind of
improvements are envisaged as a further refinement of
the model.

The structure of this model [1] presented in the next
two sections is very transparent and all of its features are al-
ways discernible. One can see directly how the approximate
baryon states,made of valence quarks only [14,15], perform.
In order to do that one calculates the matrix elements of the
(approximate) Heisenberg operators. Matrix elements at
the q2 = 0 level are evaluated using meson profile fuctions
obtained by the numerical procedure explained in Sect. 4.
As in TDIA the isospin (and hypercharge) and spin are
separably conserved, the solutions are used to calculate
magnetic moments and axial-vector coupling constants for
the baryon octet in Sects. 5 and 6. The results discussed
in Sect. 7 indicate the need for richer structure (ss̄ pairs
etc.) of baryon state vectors [16] and for the inclusion of
exchange current corrections [17].

2 Model formalism

TDIA has been already described in some detail else-
where [1]. Here we give some particulars concerning the
quark linear σ model and TDIA approximation. The La-
grangian in which the linear σ model is embedded in the
bag environment has the well known form [1,6, 19]

L = LψΘ + LintδS + [Lχ + U(χ)]Θ . (2.1)

Here all pieces, except for the symmetry breaking LSB one,
are U(3) × U(3) invariant [3, 7, 11] i.e.

Lψ =
i
2
(
ψγµ∂µψ − ∂µψγ

µψ
)
,

Lint =
g

2
ψ (σa + iπaγ5)λaψ ,

Lχ =
1
2

(∂µσa∂µσa + ∂µπa∂µπa) , (2.2)

U(χ) = − 1
2
µ2 (σ2

a + π2
a

)− 1
4
λ2 (σ2

a + π2
a

)2
+ LSB .

Here (σa, πa, a = 0, 1, . . . , 8) are (scalar, pseudoscalar)
U(3) nonets [9–11]. The symmetry is broken in a minimal
way by the vacuum expectation values of the U(3) scalars
σ and ζ [11]

LSB = m2
πfπσ +

(2m2
KfK −m2

πfπ)√
2

ζ ,

σvac = fπ ⇒ σ → σ − fπ ,

ζvac =
(2fK − fπ)√

2
⇒ ζ → ζ − ζvac . (2.3)

That leaves pseudoscalar (scalar) masses in the correspond-
ing U(3) nonets degenerate at this level of approximation.
Multiplet splitting is however partly implemented by as-
signing different quark–meson coupling constants in Lint
(see Sect. 3 below). The pseudoscalar πa and scalar σa
nonets enter in the interaction U(χ) term (2.3) as follows:

σ2
a = a+

0 a
−
0 + a−

0 a
+
0 + a0

0
2

+ κ+κ− + κ−κ+

+κ0κ0 + κ0κ0 + σ2 + ζ2 ,

π2
a = π+π− + π−π+ + π02

+K+K− +K−K+

+K0K0 +K0K0 + η2 + η′2 . (2.4)

The interaction with the quark field ψ̄ = (ū, d̄, s̄) is deter-
mined by the standard U(3) λi matrices:

σaλ
a = a+

0 λ
−
12 + a−

0 λ
+
12 + a0

0λ3 + κ+λ−
45 + κ−λ+

45

+κ0λ−
67 + κ0λ+

67 + σλ−
08 + ζλ+

08 ,

πaλ
a = π+λ−

12 + π−λ+
12 + π0λ3 +K+λ−

45 +K−λ+
45

+K0λ−
67 +K0λ+

67 + ηλ+
08 + η′λ−

08 ,

a = 0, 1, 2, . . . , 8 . (2.5a)

λ+
08 =

√
1
3

(√
2λ0 + λ8

)
,

λ−
08 =

√
1
3

(
λ0 −

√
2λ8

)
, λ0 =

√
2
3
I ,

λ±
ij =

√
1
2

(λi ± iλj) (i, j = 1, 2, . . . , 7). (2.5b)

The standard variational procedure leads to the coupled
system which contains 20 equations of motion, eight linear
boundary conditions and18derivative boundary conditions
involving quantum fields. However as the system retains
a lot of symmetry in TDIA this gets reduced to a smaller
set of c-equations. The above mentioned set of equations
(i.e. q-equations) is listed in Appendix A. Here we sketch
the TDIA procedure and list the non-linear system of c-
equations which will be solved numerically.

The field operators ψ, σa and πa appearing in (2.2)
and in Appendix A are expanded in terms of the free field
operators retaining only lowest (i.e. leading non-trivial con-
tributions). What follows is the U(3)×U(3) generalization
of the Ansätze used in [1]. The “driving” Ansätze are the
ones for the quark fields. For the massless u and d fields
one uses

ψcf =
N0√
4π

[(
f0

i (σr̂) g0

)
χfµb

c
µ,f

+
(

(σr̂) g0
if0

)
χf†
µ d

c†
µ,f̄

]
,

f0 = j0

(ω0r

R

)
, g0 = j1

(ω0r

R

)
, (2.6)

N2
0 (ω0) =

1
R3

[
j20(ω0) + j21(ω0) − 2j0(ω0)j1(ω0)

ω0

]−1

.
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The SU(3) flavor symmetry is explicitly broken by as-
suming that the s-quark has a mass ms �= 0, with the
corresponding Ansatz

ψcf =
Nm√

4π

[(
fm

i (σr̂) gm

)
χfµb

c
µ,f

+
(

(σr̂) gm
ifm

)
χf†
µ d

c†
µ,f̄

]

fm =

√
E +ms

E
j0

(ωmr
R

)
,

gm =

√
E −ms

E
j1

(ωmr
R

)
,

E(m,R) =
1
R

√
ω2 + (msR)2 ,

N2
m(ωm) =

N2
0 (ωm)

1 +N2
0 (ωm)NR

,

NR =
msj0(ωm)j1(ωm)R3

Eωm
. (2.7)

Here the indices c, f and µ denote color, flavor and spin re-
spectively.

The incorporation of m �= 0 in the model structure is
discussed in Appendix B. Boundary conditions involving
quark fields [see (A22)–(A38)] determine (by use of the
Ansätze (2.6) and (2.7)), the Ansätze for the meson fields.
This matching then automatically produces mesons “made
out of quark pairs”, as suggested in the σmodel analysis [9–
11]. One needs for pseudoscalar fields, for example,

π+ = π+
s (r)

(
bc †
m,dd

c †
m′,ū + dcm,d̄b

c
m′,u

)
χ†
m1χm′ (2.8a)

+π+
p (r)

(
bc †
m,db

c
m′,u − dc †

m′,ūd
c
m,d̄

)
χ†
m (σr̂)χm′ ,

K+ = K+
s (r)

(
bc †
m,s d

c †
m′,ū + dcm,s̄ b

c
m′,u

)
χ†
m1χm′ (2.8b)

+K+
p (r)

(
bc †
m,sb

c
m′,u − dc †

m′,ūd
c
m,s̄

)
χ†
m (σr̂)χm′ ,

η = ηs(r)
1√
2

((
bc †
m,ud

c †
m′,ū + bc †

m,dd
c †
m′,d̄

)

+
(
dcm,ūb

c
m′,u + dcm,d̄b

c
m′,d

))
χ†
m1χm′

+ηp(r)
1√
2

((
bc †
m,ub

c
m′,u + bc †

m,db
c
m′,d

)
(2.8c)

−
(
dc †
m′,ūd

c
m,ū + dc †

m′,d̄d
c
m,d̄

))
χ†
m (σr̂)χm′ ,

η′ = η′
s(r)

(
bc †
m,sd

c †
m′,s̄ + dcm,s̄b

c
m′,s

)
χ†
m1χm′ (2.8d)

+η′
p(r)

(
bc †
m,sb

c
m′,s − dc †

m′,s̄d
c
m,s̄

)
χ†
m (σr̂)χm′ .

Both scalar (πs, Ks, ηs) and pseudoscalar (πpσr̂, ηpσr̂
etc.) components of the pseudoscalar mesons are induced
by the boundary conditions. The scalar parts formally cor-
respond to physical “mesons” while the pseudoscalar ones

are connected with the solitons. The solitons contribute to
the baryonic current matrix elements as shown in Sect. 5
below. All those are just U(3) × U(3) generalizations of
our earlier U(2) based results [1]. For scalar fields, scalar
and pseudoscalar contributions are reversed. All these mix-
ings are a consequence of the transformation properties
of the bilinear combination of creation/annihilation op-
erators [15, 18]. Everything is again driven by boundary
conditions which require the following:

a+
0 = a+

0 s(r)
(
bc †
m,db

c
m′,u + dc †

m′,ūd
c
m,d̄

)
χ†
m1χm′ , (2.9a)

a−
0 = a−

0 s(r)
(
bc †
m,ub

c
m′,d + dc †

m′,d̄d
c
m,ū

)
χ†
m1χm′ , (2.9b)

κ+ = κ+
s (r)

(
bc †
m,sb

c
m′,u + dc †

m′,ūd
c
m,s̄

)
χ†
m1χm′ (2.9c)

+κ+
p (r)

(
bc †
m,sd

c †
m′,ū − dcm,s̄b

c
m′,u

)
χ†
m (σr̂)χm′ ,

κ̄0 = κ̄0
s(r)

(
bc †
m,db

c
m′,s + dc †

m′,s̄d
c
m,d̄

)
χ†
m1χm′ (2.9d)

+κ̄0
p(r)

(
bc †
m,dd

c †
m′,s̄ − dcm,d̄b

c
m′,s

)
χ†
m (σr̂)χm′ ,

σ = σs(r)
1√
2

((
bc †
m,ub

c
m′,u + bc †

m,db
c
m′,d

)

+
(
dc †
m′,ūd

c
m,ū + dc †

m′,d̄d
c
m,d̄

))
χ†
m1χm′ , (2.9e)

ζ = ζs(r)
(
bc †
m,sb

c
m′,s + dc †

m′,s̄d
c
m,s̄

)
χ†
m1χm′ . (2.9f)

Therefore s states (solitons) contribute to the baryonic
matrix elements.

The system of q-equations, which are listed in Ap-
pendix A, is in TDIA transformed in a system of differential
c-equations. The operator equalities are expressed through
the Ansätze (2.6)–(2.9). They are then sandwiched between
suitable states. An example can be found in [1], (2.16).
In addition we show here the treatment of the non-linear
πσσ term which appears for example in (A23). Our simple
Ansätze give a non-vanishing contribution for only a few
of the intermediate states |si〉. With

〈f | = 〈q| , |i〉 = |q〉 ,
〈f |πaσaσa|i〉 ,

one obtains

〈f |πaσaσa|i〉 = 〈0|bc′
d,eπ

a|s1〉〈s1|σa|s2〉〈s2|σabc
′ †
b,e′ |0〉

= 〈0|bc′
d,eπ

a|s1〉〈s1|σa|s2〉〈s2|σas (r)χ†
m1

1χm2 ,

bc †
m1,f1

bcm2,f2b
c′ †
b,e′ |0〉 = σas (r)χ

†
m1

1χbδf2,e′ ,

〈0|bc′
d,eπ

a|s1〉〈s1|σa|s2〉〈s2|bc
′ †
m1,f1

|0〉
= σas (r)χ

†
m1

1χbδf2,e′〈0|bc′
d,eπ

a|s1〉〈s1|σas (r)χ†
m3

1χm4 ,

bc †
m3,f3

bcm4,f4b
c′ †
m1,f1

|0〉
= σas

2(r)χ†
m3

1χm1χ
†
m1

1χbδf2,e′δf4,f1 ,



486 D. Horvat et al.: Quark–meson SU(3) model in a Tamm–Dancoff inspired approximation

〈0|bc′
d,eπ

a
p(r)χ

†
m5

(σr̂)χm6b
c †
m5,f5

bcm6,f6b
c′ †
m3,f3

|0〉
= 3 · πap(r)σas 2(r)χ†

d (σr̂)χm3χ
†
m3

1χm1χ
†
m1

1χb ,

δf2,e′δf4,f1δf6,f3δe,f5 (2.10)

= 3 · πap(r)σas 2(r)χ†
d (σr̂)χbδf2,e′δf4,f1δf6,f3δe,f5 .

One ends with the profile function πp(r) (2.8), σs(r)
(2.9e) and with some Pauli matrices and spinors. In this way
all the creation (annihilation) operators from the Ansätze
and Appendix A can be contracted and one ends with the
system listed in the following section.

3 Leading order in TDIA

As outlined above, in TDIA the model at the lowest oreder
(i.e. at t = q2 = 0) leads to a system of coupled ordinary
non-linear differential equations and boundary conditions.
This non-linear system contains scalar (πs(r), Ks(r), . . . ,
a0,s(r), κs(r), . . . ) and pseudoscalar (πp(r), Kp(r), . . . ,
κp(r), . . . ) profile functions (2.8) and (2.9):

D0πs + λ2πsφ1(r) = 0 , D1πp + λ2πpφ2(r) = 0 , (3.1)

D0Ks + λ2Ksφ1(r) = 0 , D1Kp + λ2Kpφ2(r) = 0 , (3.2)

D0ηs + λ2ηsφ1(r) = 0 , D1ηp + λ2ηpφ2(r) = 0 , (3.3)

D0η
′
s + λ2η′

sφ1(r) = 0 , D1η
′
p + λ2η′

pφ3(r) = 0 , (3.4)

D0a0/s + λ2a0/sφ2(r) = 0 , D0κs + λ2κsφ2(r) = 0 ,
(3.5)

D1κp + λ2κpφ1(r) = 0 , (3.6)

D0σs + λ2(σs − fπ)φ2(r)

+ λ2
(

1
2
f2
π + ζ2

vac − µ2
)
fπ = 0 ,

D0ζs + λ2 (ζs − ζvac)φ3(r)

+ λ2 (f2
π + ζ2

vac − µ2) ζvac = 0 . (3.7)

Here φ1(r), φ2(r), φ3(r), D0 and D1 are defined by

φ1(r) = 6 · (3π2
s + 4K2

s + η2
s + η′

s
2 + 4κ2

p)

+µ2 + f2
π + ζ2

vac ,

φ2(r) =
3
2
π2
p +K2

p +
1
2
η2
p +

3
2
a2
0/s + κ2

s

+
1
2

(σs − fπ)2 + ζ2
vac + µ2 , (3.8)

φ3(r) = 2K2
p + η′

p
2 + 2κ2

s + (ζs − ζvac)2 + µ2 + f2
π ,

D0 =
d2

dr2
+

2
r

d
dr

,

D1 =
d2

dr2
+

2
r

d
dr

− 2
r2
.

Some additional explanations concerning the functions
φ2(r) and φ3(r) are given in the following section. Through
derivative boundary conditions the equations are connected
with the quark radial functions fi(r), gj(r), i.e.

∂ra0/s(R) = ga0N0,0
[
f2
0 − g2

0
]∣∣
r=R ,

∂rκs(R) = gκN0,m [fmf0 − gmg0]|r=R ,

∂rκp(R) = gκN0,m [fmg0 − gmf0]|r=R ,

∂rσs(R) = gσN0,0
[
f2
0 − g2

0
]∣∣
r=R ,

∂rζs(R) = gζNm,m
[
f2
m − g2

m

]∣∣
r=R ,

∂rπs(R) = − gπN0,0
[
f2
0 + g2

0
]∣∣
r=R ,

∂rπp(R) = − gπN0,02f0g0|r=R ,

∂rKs(R) = − gKN0,m [fmf0 + gmg0]|r=R ,

∂rKp(R) = − gKN0,m [fmg0 + gmf0]|r=R ,

∂rηs(R) = − gηN0,0
[
f2
0 + g2

0
]∣∣
r=R ,

∂rηp(R) = − gηN0,02f0g0|r=R ,

∂rη
′
s(R) = − gη′Nm,m

[
f2
m + g2

m

]∣∣
r=R ,

∂rη
′
p(R) = − gη′Nm,m2fmgm|r=R . (3.9a)

Here we have used the abbreviation

Ni,j =
NiNj
2 · 4π

, i, j = 0 or m. (3.9b)

The additional quark–“meson” connections are due to the
linear boundary condition (A2), i.e.

J0 (1 − gππpN1 − gηηpN2 − gKKpNn) (3.10a)

+
(
ga0a0/sN1 + gσ (σsN2 − fπ) + gκκsNp

)
= 0 ,

(1 + gππpN1 + gηηpN2 + gKKpNp) (3.10b)

+J0
(
ga0a0/sN1 + gσ (σsN2 − fπ) + gκκsNn

)
= 0 ,

1 + gκκpNp (3.10c)

= J0 (gσfπ + gππsN1 + gηηsN2 + gKKsNn) ,

J0 (1 + gκκpNn) (3.10d)

= (gσfπ− gππsN1− gηηsN2 − gKKsNp)

Jm
(
gζ (ζs − ζvac) + gκ2κsN−1

n

)
+
(
1 + gη′η′

p + 2KpN
−1
p

)
= 0 , (3.10e)

gζ (ζs − ζvac) + gκ2κsN−1
p

= Jm
(
gη′η′

p + 2KpN
−1
n − 1

)
, (3.10f)

1 + gκ2κpN−1
p (3.10g)

= Jm
(
gζζvac + gη′η′

s + gK2KsN
−1
n

)
,

Jm
(
1 + gκ2κpN−1

n

)
= Jm

(
gζζvac− gη′η′

s − gK2KsN
−1
p

)
. (3.10h)
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These are algebraic relations in which all the functions as
for example J0, πp(r), Ks(r) are evaluated at r ≡ R. Here
J0, Jm, Nn, Np, N1, N2 are the following combinations:

J0 =
g0
f0
, Jm =

gm
fm

, (3.11a)

Nn =

√
1 +N2

0NR
1 +m/E

, Np =

√
1 +N2

0NR
1 −m/E

, (3.11b)

N1 =
(

1√
2

+ 1
)
, N2 =

1√
2
. (3.11c)

4 The numerical procedure

The numerical procedure is analogous to the one used by [1].
It relies on the code COLSYS, the collocation system solver
developed by Ascher, Christiansen and Russel [20]. How-
ever, one should keep in mind that here one deals with a
much larger system, which contains many novel features,
and which stretches COLSYS to its upper bounds.

The symmetry breaking parameters assume the follow-
ing values:

mπ = 140 MeV , fπ = 92.6 MeV ,

mK = 494 MeV , fK = 113 MeV ,

ms = 125 MeV , R = 5 GeV−1. (4.1)

The parameters µ and λ from U(χ) (2.2) were selected
by the requirement that all the profile functions appearing
in (3.1) vanish at infinity. In TDIA all differential equa-
tions listed in Appendix A, but (A17) and (A19) fulfill that
requirement. In TDIA (A17) and (A19) have the form

D0σs + λ2(σs − fπ)φ2(r) +m2
πfπ = 0 (4.2)

D0ζs + λ2 (ζs − ζvac)φ3(r) +

(
2m2

KfK −m2
πfπ
)

√
2

= 0 ,

(4.3)

with the notation introduced in (3.2).
Using (2.3), the requirement

σs(∞) = 0 , ζs(∞) = 0

leads to the conditions

λ2
(
f2
π

2
+

(2fK − fπ)2

2
+ µ2

)
= m2

π ,

λ2(2fK − fπ)

(
fπ

2 +
(2fK − fπ)

2

2
+ µ2

)

=
(
2mK

2fK −mπ
2fπ
)
, (4.4)

µ2 = −1.29525 · 10−2 GeV2 , λ = 9.95484 .

As before [1] all meson functions were assumed to vanish
at infinity. Generally speaking this means that

φ̃ → φ− φ(VEV) , φ(∞) → 0 . (4.5)

Table 1. The quark–meson dimensionless coupling constants

gM gσ gπ gK gη gη′ ga0 gκ gζ

10.7 4.0 7.8 4.0 3.1 1.5 3.9 10.5

Here for some fields φ(VEV) = 0. The coupling con-
stants gM (M = η, π, . . . ) in (2.2) are connected with the
linear boundary conditions (A2) which in the leading order
in TDIA give the set (3.4). This cannot be satisfied by an
universal coupling constant g which figures in (2.2) and
one encounters, as it was found before [1], some dynami-
cal symmetry breaking. In the beginning of the numerical
procedure one has to introduce some reasonable gM val-
ues. In the same way one also starts with the usual values
for ω0 and ωm [1]. After the meson fields (their profile
functions) have been determined, one introduces that into
the linear boundary conditions (3.4) which determine the
coupling constants gM . The new values of gM are used
in solving the system of the non-linear differential equa-
tions (3.1) and the derivative boundary conditions (3.3).
Such a self-consistent procedure is repeated (usually about
5000 times) until full agreement up to the prescribed toler-
ance is achieved. The stability of the system depends on the
values ω0 and ωm which are changed accordingly during
iterations. The U(3)×U(3) model determines all coupling
constants gM leading to the values shown in Table 1.

In the earlier approximations [1, 21] they were either
overdetermined, or undetermined, so one had to revert
to some educated guesses. The situation is presented in
the following table, Table 2. Thus it seems that only the
U(3)×U(3) model provides a fully self-consistent picture. If
one started with some foolish initial values, say gπ = 103, a
larger number of already mentioned iterations would lead
to the results shown in Table 4.1. The model gπ value
is, interestingly, close to the estimated value in [17]. The
corresponding ω values are

ω0 = 2 .0; ωm = 2.28 . (4.6)

In Fig. 2 the radial dependencies of r2φ2(r) (φ = πp, Kp,
σs, a0,s) are plotted. As can be seen from Figs. 1 and 2
the function corresponding to scalar fields (r2σ2

s , r
2a2

0,s)
are much smaller than the contributions associated with
pseudoscalars (πp and Kp). The smallness of the scalar
contributions seems to agree with the baryon–meson inter-
action being dominated by pseudoscalar mesons. Moreover
the σs presence seems to be better established than the
a0 presence.

Table 2. Determination of coupling constants

No. of No. of No. of

Model diffrential coupling linear Ref.

equations constants equations

U(2) 3 3 4 [1]

U(2) × U(2) 6 6 4 [20]

U(3) × U(3) 13 8 8 This work
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Fig. 1. Mesonic distributions r2φ2(r) outside the quark–meson
boundary R (R > 5 GeV−1)
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Fig. 2. Mesonic distributions r2φ2(r) outside the quark–meson
boundary R (R > 5 GeV−1), magnified

All model fields are described in the Furry bound state
picture [22]. The field operators (2.6)–(2.9) are expanded
in terms of the bound state fields (i.e. profile functions)
which are solutions in the non-operator sense, of the system
(see Sect. 3) of unquantized equations.

As one has solved the complex coupled system (3.1)–
(3.5), which contains both non-strange and strange profile
functions, one can say that u, d, π etc. profile functions
“feel” the presence of the s-quark dynamics.

5 Magnetic moments of the octet baryons

The general form of the model’s vector current is

JµEM,k = JµEM,Q + JµEM,M (5.1)

= : ψ̄γµ
λk
2
ψ + fklm [πl(∂µπm) + σl(∂µσm)] : .

Its normalization is determined by the boundary con-
ditions

−iγµn̂µψ = g (σa + iπaγ5)λaψ ,

(∂µπm)n̂µ = − g

2
ψ̄iλmγ5ψ , (5.2)

(∂µσm)n̂µ = − g

2
ψ̄λmψ ,

which lead to

n̂µJ
µ
EM,Q = n̂µJ

µ
EM,M = −fklmψ̄ g2 (σl+iπlγ5)λmψ . (5.3)

The quark and meson fields calculated in Sect. 4 are
introduced in the expression for the magnetic moment [14,
23]:

µ =
1
2

〈B ↑ |
∫

d3r (r × jEM) |B ↑〉 . (5.4)

Here |B ↑〉 are the usual octet baryon states [14, 15].
The quark contribution to the magnetic moment is

µ(Q) =
1
2

〈B ↑ |
∫ Rbag

0
d3r r

×
[
ψ̄

(
1
2
λ3 +

1
2
√

3
λ8

)
γµψ

]
|B ↑〉 . (5.5)

For example the quark contribution to the magnetic
moment for the proton is

µ(Q)
p =

1
2

〈p ↑ |
∫ Rbag

0
d3r r (5.6)

×
[

2
3
ψ̄uγ

µψu − 1
3
ψ̄dγ

µψd − 1
3
ψ̄sγ

µψs

]
|p ↑〉 ,

µ(Q)
p =

2
3

· R
ω4

× (ω/2) − (3/8) sin 2ω + (ω/4) cos 2ω
j20(ω) + j21(ω) − 2j0(ω)j1(ω)/ω

. (5.7)

The proton state vector is listed in Appendix C.
Formally it looks like a standard bag model result [14,

15,23]. However the quark radial functions f0, g0 etc. satisfy
the model system of equations which was given in Sect. 3.
Thus ω0(ωm) has the value (4.6).

Themeson contribution is determinedbymeson solitons
(i.e. the respective s- or p-states in (2.8) and (2.9)):

µ(M) =
1
2

〈B ↑ |
∫ ∞

Rbag

d3r (r × JEM,M )z |B ↑〉 . (5.8)

The meson vector current appearing in (5.1) can be
written as

JµEM,M =: i(π+∂µπ− − π−∂µπ+)

+i(K+∂µK− −K−∂µK+) + i(a+
0 ∂

µa−
0 − a−

0 ∂
µa+

0 )

+i(κ+∂µκ− − κ−∂µκ+) : . (5.9)

Thus the meson contribution to the magnetic moment
has the form

µ(M) =
1
2

〈B ↑ |
∫ ∞

Rbag

d3r
{
r× :

[
iφa(r)χµ

′†
1/2 (σ · r̂)χµ1/2ba†

µ′ b
a
µ

]

×∇
[
φb(r)χν

′†
1/2 (σ · r̂)χν1/2bb†ν′b

b
ν

]
:
}

|B ↑〉 . (5.10)

Here φa refer to the meson operators π+,K+ etc. appearing
in (5.9). Using the identities

χµ
′†

1/2 (σ · r̂)χµ1/2 =
√

4π
∑
α

C
1/2µ′

1 −α;1/2µY
α
1 (−1)α+1 ,
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(r × ∇)z = iLz , (5.11)

one arrives at the compact form

µ(M) = −4π
∑
a,b,α

C
1/2µ′

1 −α;1/2µC
1/2 ν′

1α;1/2 ν(−α)(−1)α

× 〈B ↑ | :

[
1
2

∫ ∞

Rbag

r2dr φa(r)φb(r)

]
: |B ↑〉 .

(5.12a)

Here the summation goes over all flavors appearing
in (5.10). The quantities φa are the products of profile
functions and operators from (2.8). For example

φ1(r) = π+
p (r)bc†µ′,db

c
µ,u . (5.12b)

Spin indices denoted by Greek letters are used only
in general expressions and the connection with our meson
functions is the following:

m ⇔ µ′ , m′ ⇔ µ , n′ ⇔ ν , n ⇔ ν′ .

It is immediately obvious from (5.10) and (5.11) that
the scalar fields a0, κ, . . . do not contribute. When one
employs the baryon wave functions [14,15] one has to eval-
uate matrix elements of the combinations containing 10
quark operators. For example

π−π+ ∼ −uA†
m dB†

n dAm′uBn′ ,

〈p ↑ |(−π−π+)|p ↑〉

=
εabcεāb̄c̄

18

{
〈0|uc̄↑db̄↑uā↓uA†

m dB†
n dAm′uBn′u

a†
↓ d

b†
↑ u

c†
↑ |0〉

−〈0|uc̄↑db̄↑uā↓uA†
m dB†

n dAm′uBn′u
a†
↑ d

b†
↓ u

c†
↑ |0〉

−〈0|uc̄↑db̄↓uā↑uA†
m dB†

n dAm′uBn′u
a†
↓ d

b†
↑ u

c†
↑ |0〉

+ 〈0|uc̄↑db̄↓uā↑uA†
m dB†

n dAm′uBn′u
a†
↑ d

b†
↓ u

c†
↑ |0〉

}
. (5.13)

Here the shorthand notation uc↑ = bcu↑ etc. was used. A
simple program takes care of the evaluations of the expres-
sions like (5.13). After the C-G coefficients from (5.12a)
are calculated one finds for the proton

µ(M)
p =

1
2

8π
3

×
{∫ ∞

Rbag

r2drπ+
p (r)π−

p (r) +
∫ ∞

Rbag

r2drπ−
p (r)π+

p (r)

}

=
8π
3

∫ ∞

Rbag

r2dr π2
p(r) . (5.14)

An earlier result [23], based on the model which had
many features in common with ours, was

µ(M)
p =

4π
3

11
3

∫ ∞

Rbag

r2dr π2
p(r) . (5.15)

As explained in Appendix C this difference is connected
with the fact that we are using field operators (2.8) for
mesons. Those operators appear in (5.10) in normal order-
ing.

In the same way one can calculate magnetic moments
for all octet baryons. The results are presented in the last
section below. The ones corresponding to the “‘semiclas-
sical” alternative (5.15) can be found in Appendix C.

6 Axial vector coupling constants

The axial-vector coupling constants g0
A and gkA (k = 1, 2,

. . . , 8) are determined by the matrix elements of the axial-
vector currents at this level of approximation:

J5µ
k = ψ̄γµγ5

λk
2
ψ

−
√

2
3

[(∂µσ0)πk − σ0(∂µπk) + (∂µσk)π0 − σk(∂µπ0)]

− dklm [(∂µσl)πm − σl(∂µπm)] ,

k, l,m = 1, 2, . . . , 8 , (6.1)

and

J5µ
0 = ψ̄γµγ5

1
2
ψ − [(∂µσa)πa − σa(∂µπa)] ,

a = 0, . . . , 8 . (6.2)

One calculates the matrix element

gnA = 〈B ↑ |
∫

d3rJ5,3
n (r) |B̃ ↑〉 , n = 0, . . . , 8 . (6.3)

The procedure is entirely analogous to the one used to
calculate the magnetic moments in the preceding section.
(For example the meson part analogous to (5.13) contains
matrix elements of 10 quark operators.) The final expres-
sion contains the quark (Q) and the mesonic (M) pieces, i.e.

gnA = gnA,Q + gnA,M , (6.4)

where more properly one should have written gnA,M (q2 = 0)
for example. This is the consequence of TDIA at the zeroth
level as explained in introduction (see [1] also).

With B = B̃ = p one finds

g0
A,Q =

1
3

j20(ω0) + j21(ω0)
j20(ω0) + j21(ω0) − 2j0(ω0)j1(ω0)/ω0

, (6.5a)

g0
A,M = 2

4π
3

{∫ ∞

Rbag

d3r [ηp(r)σ′
s(r)(σs(r) − fπ)Dηp(r)]

+
1
3

∫ ∞

Rbag

d3r
[
πp(r)a0 ′

0,s(r) − a0
0,s(r)Dπp(r)

]}
,

(6.5b)

g3
A,Q =

5
3

1
3

j20(ω0) + j21(ω0)
j20(ω0) + j21(ω0) − 2j0(ω0)j1(ω0)/ω0

(6.6a)
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g3
A,M = 2

4π
3

{
5
3

(6.6b)

×
∫ ∞

Rbag

d3r [πp(r)σ′
s(r) − (σs(r) − fπ)Dπp(r)]

− 1
3

∫ ∞

Rbag

d3r
[
ηp(r)a0 ′

0,s(r) − a0
0,s(r)Dηp(r)

]}
,

g8
A,Q =

1
3

j20(ω0) + j21(ω0)
j20(ω0) + j21(ω0) − 2j0(ω0)j1(ω0)/ω0

, (6.7a)

g8
A,M = 2

4π
3

(6.7b)

×
{∫ ∞

Rbag

d3r [ηp(r)σ′
s(r) − (σs(r) − fπ)Dηp(r)]

+
1
3

∫ ∞

Rbag

d3r
[
πp(r)a0 ′

0,s(r) − a0
0,s(r)Dπp(r)

]}
,

with D = d/dr + 2/r.
The matrix elements of the strangeness changing

PCACs, which appear in the semileptonic decays, lead
to similar expressions. The quark contributions have the
general form

J5,3
4+i5,Q = 〈B|ψ̄γ3γ5

1
2

(λ4 + iλ5)ψ|B′〉 ,

(gA)B,Q = 〈B|uA†
m sAn |B′〉N0Nm (6.8a)

×
{∫ R

0
r2dr

[√
1 +

ms

E
j0(ωm)j0(ω0)

]

− 1
3

∫ R

0
r2dr

[√
1 − ms

E
j1(ωm)j1(ω0)

]}
.

The baryon states are as follows:

B = p , B′ = Λ , B = n ,

B′ = Σ− B = Λ , B′ = Ξ− . (6.8b)

The correspondingmesonic parts are forΛ→ p+ e−+ ν̄e

(gA)M = − 4π
3
√

6

×
{

3
∫ ∞

Rbag

d3r [Kp(r)σ′
s(r)

− (σs(r) − fπ)DKp(r)] (6.9)

−
∫ ∞

Rbag

d3r [ηp(r)κ′
s(r) − κs(r)Dηp(r)]

× 2
∫ ∞

Rbag

d3r [πp(r)κ′
s(r) − κs(r)Dπp(r)]

}
;

for Σ− → n+ e− + ν̄e

(gA)M = − 4π
9

×
{∫ ∞

Rbag

d3r [Kp(r)σ′
s(r)

− (σs(r) − fπ)DKp(r)] (6.10)

−2
∫ ∞

Rbag

d3r [ηp(r)κ′
s(r) − κs(r)Dηp(r)]

−2
∫ ∞

Rbag

d3r
[
Kp(r)a′

0,s(r) − a0,s(r)DKp(r)
]

+
∫ ∞

Rbag

d3r [πp(r)κ′
s(r) − κs(r)Dπp(r)]

}
;

for Ξ− → Λ+ e− + ν̄e

(gA)M = − 4π
6
√

6

×
{∫ ∞

Rbag

d3r [Kp(r)σ′
s(r)

−(σs(r) − fπ)DKp(r)]

−
∫ ∞

Rbag

d3r [ηp(r)κ′
s(r) − κs(r)Dηp(r)]

−3
∫ ∞

Rbag

d3r
[
Kp(r)a′

0,s(r) − a0,s(r)DKp(r)
]

+2
∫ ∞

Rbag

d3r [Kp(r)ζ ′
s(r)

− (ζs(r) − ζvac) DKp(r)]

+6
∫ ∞

Rbag

d3r
[
η′
p(r)κ

′
s(r) − κs(r)Dη′

p(r)
]

(6.11)

+3
∫ ∞

Rbag

d3r [πp(r)κ′
s(r) − κs(r)Dπp(r)]

}
.

The corresponding numerical results can be found in the
next section.

7 Results and conclusions

Our model formalism in TDIA at the lowest level of approx-
imation is used for the evaluation of the magnetic moments
and the axial-vector coupling constants of the non-strange
and strange baryons.

The baryonmagneticmoments are determined by quark
µ(Q) and meson µ(M) pieces. As the flavor SU(3) is broken
only byms �= 0, the quark piece has a contribution coming
from the u, d quarks µ(Q)

0 and a contribution coming from
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the s quark µ
(Q)
s . The meson pieces depend on the pion

soliton µ(M)
π and the kaon soliton µ(M)

K . Their values are

µ
(Q)
0 = 1.886 , µ(Q)

s = 1.695 , (7.1)

µ(M)
π =

8π
3

∫ ∞

Rbag

r2dr π2
p(r) = 0.027 , (7.2a)

µ
(M)
K =

8π
3

∫ ∞

Rbag

r2dr K2
p(r) = 0.020 . (7.2b)

The full expressions µB = µQB + µMB are

µp = µQ0 + µMπ , (7.3a)

µn = − 2
3
µQ0 − µMπ , (7.3b)

µΛ = − 1
3
µQs − µMK , (7.3c)

µΣ0 =
2
9
µQ0 +

1
9
µQs +

1
2
µMK , (7.3d)

µΣ+ =
8
9
µQ0 +

1
9
µQs + µMK , (7.3e)

µΣ− = − 4
9
µQ0 +

1
9
µQs , (7.3f)

µΣ0Λ =
1√
3
µQ0 +

1√
3

(
µMπ +

1
2
µMK

)
, (7.3g)

µΞ0 = − 2
9
µQ0 − 4

9
µQs − µMK , (7.3h)

µΞ− =
1
9
µQ0 − 4

9
µQs . (7.3i)

InTable 3 themodel values are comparedwith experimental
results. Signs are predicted correctly, but overall agreement
is not satisfactory although at this level of approximation
where no other refinement of the models is applied one can
be quite pleased with the results. Moreover the predicted
value does not depend on the details of the model as shown
in Table 4.

Although both quark Q and meson M phases were
calculated in a model which includes s quarks, only the
simplest “valence” proton state vectors (C2) were used.

Table 3. Baryon magnetic moments

Baryon µQ µM µ µexp ∆µ %
p 1.886 0.027 1.913 2.793 46
n −1.257 −0.026 −1.284 −1.913 49
Λ −0.564 −0.020 −0.584 −0.613 8
Σ0 0.607 0.010 0.617 – –
Σ0 → Λ 1.089 0.021 1.110 1.610 45
Σ− −0.650 0.000 −0.650 −1.160 78
Σ+ 1.864 0.020 1.884 2.458 31
Ξ0 −1.172 −0.020 −1.191 −1.250 5
Ξ− −0.543 0.000 −0.543 −0.651 20

Table 4. Proton magnetic moment

Model µQ µM µ Ref.
U(2) 1.886 0.037 1.923 [1]
U(2) × U(2) 1.886 0.018 1.904 [21]
U(3) × U(3) 1.886 0.027 1.913 This work

Table 5. Diagonal axial-vector constants

Constant g
(Q)
A g

(M)
A gA Experiment ∆g %

g3
A 1.110 0.184 1.294 1.267 2

g0
A 0.666 0.111 0.777 0.280 178

g8
A 0.666 0.111 0.777 0.579 34

Table 6. g3
A calculated in various non-linear models

Model g3
A,Q g3

A,M g3
A Ref. ∆g %

U(2) 1.110 0.146 1.246 [1] 1
U(2) × U(2) 1.110 0.146 1.246 [21] 1
U(3) × U(3) 1.110 0.184 1.294 This work 2

The same “valence” approximation [14, 15] was used for
the other baryon state vectors so this is precisely the place
where one could start refining the model. This should be
(and will be) done because this would invoke the strange
component in the proton without which one cannot ad-
dress the problem of the axial anomaly or nucleon strange
form factors.

The s-quark admixture in the non-strange baryon state
vectors would pick up additional contributions from quark
and meson fields calculated in TDIA. That would change
both the theoretical expressions for the magnetic moments
and for the axial-vector coupling constants. However, from
the point of view of the present work, that would require
a substantial addition to the model.

A very similar conclusion follows from the investigation
of the axial-vector coupling constants. The evaluation of
the “diagonal” cases (6.5), (6.6) and (6.7) are summarized
in Table 5. It seems reasonable to assume that the dis-
crepancies are again caused by the too poor structure of
the proton state vectors. It is usually stated [16] that s
quark admixture in the proton state vector must be im-
portant. However, the prediction for the isovector axial-
vector coupling constant g3

A is very good. This seems to
be some general characteristic of the chiral models which
are constructed to satisfactory reproduce gI=1

A . Moreover
the present non-linear, non-perturbative approach seems to
work somewhat better than some simple expansions which
might lead to too large gI=1

A .
The enlarged U(3)×U(3) model seems to predict some-

what worse values for g3
A than earlier attempts. However,

the results shown in Table 6 are not significantly different.
The present value is about 3% too large. The g0

A values
are more model dependent, as seen in Table 7. The small
difference shown there is due to symmetry breaking. In
the U(2) × U(2) case [21] the π and η fields were non-
degenerate. In the present approach the π and η are de-
generate. That was done in order to limit the number of
non-linear equations (see (2.2) and (3.1), and Appendix A)
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Table 7. g0
A calculated in various non-linear models

Model g0
A,Q g0

A,M g0
A Ref.

U(2) × U(2) 0.666 −0.008 0.658 [20]
U(3) × U(3) 0.666 0.111 0.777 This work

Table 8. gA in semileptonic decays

Decay (gA)Q (gA)M gA exp. ∆g %
Λ → p + e−+ ν̄e −0.758 −0.059 −0.817 −0.718 14
Σ− → n + e−+ ν̄e 0.206 0.016 0.222 0.340 53
Ξ− → Λ + e−+ ν̄e −0.253 −0.029 −0.282 −0.250 13

to some reasonable level. The differences in the symmetry
breaking does not have a significant influence. The present
value is only 18% larger than the older [21] estimate.

As shown in Table 8 the calculated gA’s, for the semilep-
tonic decays (6.9), (6.10) and (6.12), seem reasonable in
the two cases. All signs are correctly predicted, the abso-
lute magnitude of the Λ-decay constant is 14% too large,
the Σ-decay constant is 53% too small and the Ξ−-decay
constant is 13% too large. One cannot learn more from
those results than one has already learned from Table 5.
Here, as in Tables 5–7 the meson phase contribution is no-
ticeably smaller than the quark phase contributions. This
might look as a support for the simple quark models [14,15].
However, our model, which contains the spherical cavity as
an essential ingredient, might be biased in that direction.
Thus in the future one should attempt to solve a model in
which a quark bound state does not need a bag.

In its present form this non-linear self-consistent model
shows interesting features. For example the π and K con-
tributions (see Fig. 1) are considerably larger than the σ
and a0 contribution. One is tempted to conclude that this
reflects the fact that in baryonic processes the presence of
scalars was hard to detect. Generally speaking the model
offers stable and physically acceptable [9–11] solutions.

In this model the complete problem with u, d and s
quarks and two meson nonets has been solved in
TDIA. Quite complicated non-linear operator dynamics
has been reduced to the highly non-trivial, but solvable,
non-linear system.

All model dependent quantities, Tables 3–8, have ac-
ceptable orders of magnitude. All relative signs for µ and
gA are correctly predicted. The discrepancies with the ex-
perimental magnitudes reflect the exploratory character of
the present TDIA solution. They might be connectable to
the too simple description of the baryon state vectors [16]
and to the absence of exchange current corrections [17,25].
A future development of the TDIA based solution might
lead to better predictions also in the context of multiquark
states [26] built in the TDIA formalism.

Appendix A

The equations of motion and boundary conditions for the
quantum fields a0(x), K+(x), ψ(x), . . . are

iγµ∂µψ = 0 , ms = 0 , (A1)

− iγµn̂µψ|r=R = g (σa + iπaγ5)λaψ|r=R , (A2)

∂µ∂
µa−

0 + λ2a−
0

(
σ2
a + π2

a + µ2) = 0 , (A3)(
∂µa−

0

)
n̂µ = − g

2
ψλ−

12ψ
∣∣∣
r=R

, (A4)

∂µ∂
µa+

0 + λ2a+
0

(
σ2
a + π2

a + µ2) = 0 , (A5)(
∂µa+

0

)
n̂µ = − g

2
ψλ+

12ψ
∣∣∣
r=R

, (A6)

∂µ∂
µa0

0 + λ2a0
0
(
σ2
a + π2

a + µ2) = 0 , (A7)(
∂µa0

0
)
n̂µ = − g

2
ψλ3ψ

∣∣∣
r=R

, (A8)

∂µ∂
µκ+ + λ2κ+ (σ2

a + π2
a + µ2) = 0 , (A9)(

∂µκ+) n̂µ = − g

2
ψλ+

45ψ
∣∣∣
r=R

, (A10)

∂µ∂
µκ− + λ2κ− (σ2

a + π2
a + µ2) = 0 , (A11)(

∂µκ−) n̂µ = − g

2
ψλ−

45ψ
∣∣∣
r=R

, (A12)

∂µ∂
µκ0 + λ2κ0 (σ2

a + π2
a + µ2) = 0 , (A13)(

∂µκ0) n̂µ = − g

2
ψλ+

67ψ
∣∣∣
r=R

, (A14)

∂µ∂
µκ0 + λ2κ0

(
σ2
a + π2

a + µ2) = 0 , (A15)(
∂µκ0

)
n̂µ = − g

2
ψλ−

67ψ
∣∣∣
r=R

, (A16)

∂µ∂
µσ + λ2σ

(
σ2
a + π2

a + µ2)+m2
πfπ = 0 , (A17)

(∂µσ) n̂µ = − g

2
ψλ−

08ψ
∣∣∣
r=R

, (A18)

∂µ∂
µζ + λ2ζ

(
σ2
a + π2

a + µ2)
=

(
m2
πfπ − 2m2

KfK
)

√
2

, (A19)

(∂µζ) n̂µ = − g

2
ψλ+

08ψ
∣∣∣
r=R

, (A20)

∂µ∂
µπ− + λ2π− (σ2

a + π2
a + µ2) = 0 , (A21)(

∂µπ−) n̂µ = − g

2
ψiλ−

12γ5ψ
∣∣∣
r=R

, (A22)

∂µ∂
µπ+ + λ2π+ (σ2

a + π2
a + µ2) = 0 , (A23)(

∂µπ+) n̂µ = − g

2
ψiλ+

12γ5ψ
∣∣∣
r=R

, (A24)

∂µ∂
µπ0 + λ2π0 (σ2

a + π2
a + µ2) = 0 , (A25)(

∂µπ0) n̂µ = − g

2
ψiλ3γ5ψ

∣∣∣
r=R

, (A26)

∂µ∂
µK+ + λ2K+ (σ2

a + π2
a + µ2) = 0 , (A27)(

∂µK+) n̂µ = − g

2
ψiλ+

45γ5ψ
∣∣∣
r=R

, (A28)

∂µ∂
µK− + λ2K− (σ2

a + π2
a + µ2) = 0 , (A29)(

∂µK−) n̂µ = − g

2
ψiλ−

45γ5ψ
∣∣∣
r=R

, (A30)
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∂µ∂
µK0 + λ2K0 (σ2

a + π2
a + µ2) = 0 , (A31)(

∂µK0) n̂µ = − g

2
ψiλ+

67γ5ψ
∣∣∣
r=R

, (A32)

∂µ∂
µK0 + λ2K0

(
σ2
a + π2

a + µ2) = 0 , (A33)(
∂µK0

)
n̂µ = − g

2
ψiλ−

67γ5ψ
∣∣∣
r=R

, (A34)

∂µ∂
µη + λ2η

(
σ2
a + π2

a + µ2) = 0 , (A35)

(∂µη) n̂µ = − g

2
ψiλ−

08γ5ψ
∣∣∣
r=R

, (A36)

∂µ∂
µη′ + λ2η′ (σ2

a + π2
a + µ2) = 0 , (A37)

(∂µη′) n̂µ = − g

2
ψiλ+

08γ5ψ
∣∣∣
r=R

(A38)

Appendix B

The finite s-quark massms (2.7) plays a role in the numer-
ical solutions of the complex system (3.1)–(3.4). From the
model structure (2.1)–(2.3) one expects the divergence of
an axial-vector current which is consistent with PCAC [2].
However the finite s-quark mass in the bag environment
leads to a consistency question. For a 4 + i5 component of
an axial-vector current

J5µ
k = ψ̄γµγ5

λk
2
ψΘ −

√
2
3

[(∂µσ0)πk − σ0 (∂µπk)] Θ̄

+

√
2
3

[(∂µσk)π0 − σk (∂µπ0)

−dklm ((∂µσl)πm − σl(∂µπm))] Θ̄ ,

k, l,m = 0, 1, . . . , 8 , (B1)

one finds the following contributions inside (Θ ≡ Θ(R))
and outside (Θ̄ ≡ 1 −Θ(R)) the quark–meson boundary:

∂µ(J
5µ
Q,k)s−wave =

N0Nm
4π

(fmf0 + gmg0)ms

∣∣∣∣
Θ

,

∂µ(J
5µ
M,k)s−wave =

√
2Ks(r)m2

KfK

∣∣∣
Θ̄
,

∂µ(J
5µ
Q,k)p−wave =

N0Nm
4π

(fmg0 + gmf0)ms

∣∣∣∣
Θ

, (B2)

∂µ(J
5µ
M,k)p−wave =

√
2Kp(r)m2

KfK

∣∣∣
Θ̄
,

k = 4 + i5 .

Outside this one has the canonical PCAC form [14,15,25].
Inside that can be expressed only via quark functions fi, gj .
Although our model does not impose any direct conditions,
it seems reasonable to expect that the outside and inside
phase should be equal at the boundary, thus ensuring the
validity of PCAC in the whole space. Indirectly this is
also connected with the derivative conditions (A22)–(A38)
and (3.3).

Introducing the model determined functions fm(R),
f0(R), gm(R), g0(R), Ks(R) and Kp(R) and using (4.1)

and (4.6) one finds a reasonable consistency. The corre-
sponding pieces in (B2) are numerically equal, at r = R,
within 9% accuracy. It should be also mentioned that
ω0 and ωm in (2.8) are not arbitrary parameters. As de-
scribed in Sect. 4. their values are determined by the sys-
tem (3.1), (3.3) and (3.4).

Appendix C

Reference [23] has constructed the meson phase (soliton
fields) as a continuation of quark densities. In our formal-
ism their result [23] is reproduced if one does not employ
the normally ordered electromagnetic current (5.1). In the
present formalism the normal ordering leads [27,28] to the
vanishing vacuum matrix element of the current (5.1).

Without normal ordering the pion field densities ap-
pearing in (5.13) can be written as

π−π+ ∼ uA†
m dAm′dB†

n uBn′

= −uA†
m dB†

n dAm′uBn′ + δABm′,nu
A†
m uBn′ ,

π+π− ∼ dA†
m uAm′uB†

n dBn′

= −dA†
m uB†

n uAm′dBn′ + δABm′,nd
A†
m dBn′ . (C1)

The additional terms appearing in (C1) are sandwiched
between proton state vectors:

|p ↑〉 =
εabc√

18

[
ua†

↓ d
b†
↑ u

c†
↑ − ua†

↑ d
b†
↓ u

c†
↑
]
|0〉 ,

〈p ↑ | = 〈0| ε
āb̄c̄

√
18

[
uc̄↑d

b̄
↑u
ā
↓ − uc̄↑d

b̄
↓u
ā
↑
]
. (C2)

One finds

〈p ↑ |(δABµ,ν′d
A†
µ′ d

B
ν )|p ↑〉 =

2
3
δµ,ν′δµ′↓,ν↓ +

1
3
δµ,ν′δµ′↑,ν↑ ,

〈p ↑ |(δABµ,ν′u
A†
µ′ u

B
ν )|p ↑〉 =

1
3
δµ,ν′δµ′↓,ν↓ +

5
3
δµ,ν′δµ′↑,ν↑ .

(C3)

Using

µ(M) = −4π
∑
µ,α

C
1/2µ′

1 −α;1/2µC
1/2µ
1α;1/2 ν(−α)(−1)α

×
[

1
2

∫ ∞

Rbag

r2dr φa(r)φb(r)

]
, (C4)

one eventually arrives at the result

4π
3

· 5
3

∫ ∞

Rbag

r2dr π2
p(r) . (C5)

When this is added to the result (5.14) one obtains the
value given by [23]

µMp =
4π
3

·
(

2 +
5
3

)∫ ∞

Rbag

r2dr π2
p(r)
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Table 9. Baryon magnetic moments

Baryon µQ µTDIA
M µTDIA µ

[22]
M µ[22] µexp

p 1.886 0.027 1.913 0.050 1.936 2.793

n −1.257 −0.026 −1.284 −0.050 −1.307 −1.913

Λ −0.564 −0.020 −0.584 −0.030 −0.594 −0.613

Σ0 0.607 0.010 0.617 0.020 0.627 –

Σ0 → Λ 1.089 0.021 1.110 0.043 1.132 1.610

Σ− −0.650 0.000 −0.650 −0.007 −0.657 −1.160

Σ+ 1.864 0.020 1.884 0.037 1.901 2.458

Ξ0 −1.172 −0.020 −1.191 −0.031 −1.203 −1.250

Ξ− −0.543 0.000 −0.543 −0.004 −0.547 −0.651

=
4π
3

· 11
3

∫ ∞

Rbag

r2dr π2
p(r) . (C6)

Using the TDIA model values for the profile functions πp,
Kp etc. one does not find a significant numerical difference
between the expressions (5.14) and (C6) as summarized in
Table 9.
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